If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-4y-13=0
a = 1; b = -4; c = -13;
Δ = b2-4ac
Δ = -42-4·1·(-13)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{17}}{2*1}=\frac{4-2\sqrt{17}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{17}}{2*1}=\frac{4+2\sqrt{17}}{2} $
| 9x^2=-126 | | –7a=2 | | 2x+56=38 | | (x+2/14)=x/10 | | (2x-1)+(x+16)+(4x-15)=106 | | (n)/(5)+9=-11 | | 126=4x+(7x-6) | | 6x+2=-6(1-x) | | x=1.2/0.25 | | 4n-7-5n=2-n+4 | | 10=p+30 | | 4x+5x+4x=180 | | F(x)=∛((6x+2)) | | 2(8+2)=3(2x-7) | | 3(1-8n)=99 | | 3x-12+2x+8=5x+2-3x | | 0.25x=1.2 | | 3.4=6w | | 4x+7/5=3x-6/2 | | 2/3x+x=x | | 4x+5x4x=180 | | X^4-1x^2+2x^2-2=88 | | w^{2}+12w+35=0 | | (2/3)a-8=11 | | y+7=2-3 | | 4x+12=6x+22 | | 64x^-9=0 | | 4(z+10)=72 | | 10x+3x+11=180 | | (x/25)=71 | | 8s-20=68 | | 1/3(-33)=1/3(3x) |